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number of primes in the above expression for hN . It should be borne in mind that 
the approximant vanishes at the endpoints of the interval [0, 'XI; consequently if 
the approximant does not have this property, we should modify it accordingly; this 
may involve subtracting a linear trend as suggested in similar circumstances by 
Lanezos [3, p. 236]. 
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A Note on Best Approximation in Ent 

By J. T. Day 

Let D be a closed convex set with positive volume V in Euclidean n-dinmensional 
space. Let f be a nonnegative function of class C2 on D (see [2]), and Q be a linear 
polynomial on D, i.e. 

Q(x)-ao+ao x1+aax2+2 + +aax , x ED. 
We consider the problem of "best" one sided approximation of f by Q in the 

sense that among all linear fnctions Q(x) satisfying 

(1) Q(x) ? f(x), x E DI 

we are looking for that one which maximizes fD Q dx. 
THEOREM 1. The problem under consideration has a unique solution ven by the 

tangent plane through the centroid p of D, provided that the eigenvalues of the Hessian 
matrix (f(X)), x E D, are nonnegative. 

The proof is by construction. Let the centroid p of D have artesian coordinates 
(P pl ?p2 ?***?pn ). Then 

(2) fQ dx= V- Q(p1, p2, . p- ) 

for all linear polynomials Q (see [3]). Since Q(p) ? f(p), we choose Q*(p) f(P) 
Choose Ql*(p) = fi(p), Q2*(p) = f2(p), , Q *(p) = fn(p). Here* fx 
(Qf/ax1) (x), etc. The above conditions determine Q*(x). 

By Taylor's theorem we have f(x) = Q*(x) + RI(x, p). The remainder R(x, p) 
is nonnegative, since the eigenvalues of the Hessian matrix are nonnegative (see 
[2]). Thus f(x) _ Q*(x). We conclude that Q*(x) is a "best" approximate. 

Suppose there were another "best" approximate T(x). Then T(p) must equal 
f(p). Consider a point x = (xI, P?, pn) where xi > pi . By Taylor's theorem 
we have 
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(3) f(x) = f(p) + fi(p) (xi -p) + fii(pi + sh, P2 X * p.) (Xi - pl)2 /2. 

Here h = xl- p, 0 < s < 1. 

(4) T(x) = f(p) + Ti(p)(xi - p'). 

-Since f (x) _ T (x), we find that 

(5) fd(p) - Ti(p) + fil(pi + sh, P2 X , pn)(Xi - pi)/2 _ 0. 

The quantity fi(p) - Ti(p) must be nonnegative, for otherwise we could choose 
(xi - pi) so small that (5) could not hold. (We note here fni(x) > 0 for x E D by 
hypothesis.) A similar consideration in the case where pi > xi shows that 
fi(p)- Ti(p) < 0. Hence fi(p) = T1(p). In the same manner one can show that 
ft(p) = Ti(p), i = 2, *.. , n. Thus Q*(x) and T(x) are identical. 

The idea for this note occurred to the author after hearing a lecture by Prof. 
Ranko Bojanic [1] on "best" one sided approximation in the case of functions of one 
variable. 
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A Close Approximation Related to the Error 
Function* 

By Roger G. Hart 

A function has been found that closely approximates the integral function 

F(x) = exp (-t2/2) dt 

for all real values of x. 
Let 

P W = exp _X /2) exp (-x2/2)(1 + bx2) + 

P(x) = exp (-x Po- + [P2+- exp (+ bx/2)/(1 + bx2) /2/(1 + ax2)]112j 

Po + x {exp (-x/2) - [po22 + exp (-x2/2)(1 + bx2)"2/(1 + a.2)]"2}, 
where Po = (,r/2)I/2 _ 1.253314137, 

1 + (1 - 2ir2+ 6i)1/2 2 .212023887 
2w 
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